Frequently Asked Questions
    Фрезы с СМП
  • Какие серии фрез со сменными многогранными пластинами (СМП) представлены в номенклатуре компании ISCAR?
    Номенклатура фрез c СМП состоит из инструментов для основных видов фрезерной обработки: фрезерование уступов, плоскостей, высоких уступов, фасонных поверхностей, пазов и канавок, фасок и т.д. Отдельной серией инструмента представлены фрезы для обработки с большой подачей (специальный метод обработки).
  • Названия различных серий фрез с СМП в номенклатуре компании ISCAR, которые начинаются со слова «HELI» (перевод с англ. - спираль) и таких фраз как «helical cutting edge» (перевод с англ. – спиральная режущая кромка) часто подчеркивают как преимущества в технической информации. Почему?
    В начале 1990-х годов компания ISCAR представила серию фрез HELIMILL, имеющих спиральную режущую кромку. Высокоэффективная режущая кромка была образована пересечением положительной передней поверхности и винтовой задней поверхности. Конструкция инструментов HELIMILL обеспечивает постоянный положительный передний угол и постоянный задний угол на всей длине режущей кромки. Эта особенность позволила значительно снизить силы резания и обеспечить стабильный процесс резания. Серия фрез HELIMILL ознаменовала кардинально новый подход к проектированию инструмента, который сегодня считается признанным стандартом в разработке СМП с положительной фасонной передней поверхностью. Формулировка “HELI” отражает наличие спиральной режущей кромки как важный фактор в развитии этой серии фрез с СМП.
  • Есть ли у компании ISCAR фрезы с СМП для обработки алюминиевых сплавов?
    Да. Компания ISCAR специально разработала серии фрез с СМП для эффективной обработки алюминиевых сплавов. Основные особенности этих инструментов: облегченная конструкция корпуса или интегрированное исполнение с инструментальным конусом, уникальная система крепления СМП, конструкция с регулируемыми картриджами, шлифованные и полированные пластины с различными радиусами, и наиболее популярные пластины с напайными вставками из поликристаллического алмаза (PCD). Большинство фрез имеет внутренние каналы подвода охлаждения через инструмент. Серия фрез компании ISCAR HELIALU c СМП обеспечивает эффективную высокоскоростную обработку (HSM – high speed machining) алюминиевых сплавов и высокую скорость снятия материала (MRR – material removal rate).
  • Часто используется термин «high positive» (перевод с англ. – высоко положительный) когда речь идет о фрезах с СМП. Что это значит?
    Как правило, этот термин относится к передним углам фрез с СМП. Достижения в области порошковой металлургии привели к созданию пластин с спиральной режущей кромкой, передняя поверхность которых «агрессивно» наклонена относительно основной плоскости. Это приводит к значительному увеличению положительных передних углов (нормального и осевого) инструмента с СМП. В определении «high positive» подчеркивается эта особенность. Примечание. Это определение отражает текущие тенденции в проектировании инструмента. Поскольку производство инструментов с СМП из твердого сплава активно развивается, мы можем предположить то, что уникально на сегодняшний день («high positive») станет обычным явлением уже завтра.
  • Твердый сплав основной инструментальный материал для СМП. Компания ISCAR предлагает большое разнообразие марок твердого сплава. Где я могу найти информацию о сплаве, рекомендуемых скоростях резания и области применения?
    Компания ISCAR предлагает ряд электронных и печатных каталогов с руководствами, содержащими информацию о сплаве (тип основы, состав покрытия), область применения в соответствии со стандартом ISO и диапазоне скоростей резания. Пожалуйста, свяжитесь с представителями компании ISCAR в вашем регионе для получения подробной информации.
  • Есть ли у фрез с СМП внутренние каналы для подвода охлаждающей жидкости?
    Большинство фрез с СМП, представленных в недавнее время, имеют внутренний подвод охлаждения к каждой пластине через корпус инструмента.
  • Есть торцевые насадные фрезы, которые не имеют внутренних каналов подвода охлаждения. Если необходим внутренний подвод, как я могу модифицировать фрезы?
    В большинстве случаев модификация не требуется. Вместо этого, компания ISCAR предлагает простое решение - винты для закрепления фрез с регулируемыми форсунками. Винты не только надежно закрепляют фрезы на оправках, но и обеспечивают эффективный подвод охлаждающей жидкости непосредственно в зону резания, улучшая эвакуацию стружки. Форсунка – это регулируемая часть винта, позволяющая легко настроить подвод охлаждения на необходимую глубину в зависимости от типоразмера пластины и выполняемой операции.
  • Как я могу гарантировать соблюдение правильного крутящего момента при затяжке винтов, крепящих СМП на корпусе фрезы?
    ISCAR представляет два типа динамометрических ключей для фрез с СМП: с возможностью регулировки крутящего момента и с фиксированным значением. Первый тип ключа позволяет пользователю установить необходимое значение крутящего момента в пределах допустимого диапазона, а второй тип ключа имеет фиксированное значение крутящего момента. Информацию о том, какой необходим крутящий момент для конкретной СМП можно найти в каталогах, технических руководствах. Кроме того, информация о необходимом крутящем моменте теперь маркируется на корпусе инструмента.
  • Какой параметр лучше изменять для повышения производительности обработки: величину подачи или глубину резания в допустимых пределах?
    Следует отметить, что этот вопрос не имеет однозначного ответа и зависит от нескольких факторов. В общем случае, при постоянной скорости снятие материала (MRR) увеличение величины подачи с уменьшением глубины резания является более предпочтительным, чем противоположная комбинация (уменьшенная величина подачи и увеличенная глубина резания), потому что это приводит к увеличению стойкости инструмента.
  • Как мне найти наиболее эффективные фрезы с СМП для моей операция?
    Если вы знаете параметры операции (обрабатываемый материал, глубина, ширина резания, длина фрезерования, мощность оборудования и т.д.), то ITA (ISCAR Tool Advisor – электронный помощник по подбору инструмента ISCAR) может быть эффективным средством в выборе инструмента. Это бесплатное программное обеспечение, которое может быть установлено на компьютер или смартфон. Кроме того вы можете воспользоваться им на нашем сайте без установки. Если вам необходима подробная консультации в выборе серии фрез с СМП, пожалуйста, свяжитесь с представителями компании ISCAR в вашем регионе.
  • What is turn-milling?
    Turn-milling is a process whereby a milling cutter machines a rotating workpiece. This method combines milling and turning techniques and has many advantages.
  • What are the advantages of turn-milling comparing with classical turning?
    • In turning, machining non-continuous surfaces features interrupted cutting that results in unwanted impact load, poor surface finish and early tool wear. In turn-milling, the tool is a milling cutter that is intended exactly for interrupted cuts with cyclic load.
    • When turning materials with long chips, chip disposal is difficult and identifying the correct chipbreaking geometry of a cutting tool is not simple. The milling cutter used in turn-milling generates a short chip that considerably improves swarf handling.
    • In turning eccentric areas of rotating components (crankshafts, camshafts, etc.), off-center masses of the components cause unbalanced forces that adversely affect performance. Turn-milling with its low rotary velocity of a workpiece significantly diminishes and even prevents this negative effect.
    • In turning, the rotation of heavy-weight parts, which defines the cutting speed, is limited by the characteristics of the main drive. If the drive does not allow rotation of large masses with required velocity, then the cutting speed will be far from the optimal range; and will resulut in low turning performance. Turn-milling provides a way to overcome the above difficulties effectively.
  • How I can calculate cutting data for turn-milling?
    The calculation method is shown in the March 2017 issue of “Welcome to ISCAR’s World”, a collection of articles. The electronic version of the issue can be found also on ISCAR’s site catalogs. If necessary, please contact our local representatives in your area – they will be glad to help with this issue.
  • What is a cutting edge angle and what is a lead angle?
    There are various international and national standards that specify the active geometry of cutting tools very precisely. The “cutting edge angle” is the angle between the main cutting edge of a milling cutter and the plane containing the direction of feed motion. "Lead angle" (or “approach angle”) is the angle complementary to the cutting edge angle, i.e. the sum of these both angles is 90°. For example, for a typical face milling cutter the cutting angle is the angle between the cutting edge and the plane, which the cutter generates. If this angle is 60°, then the lead angle will be 30°. The cutting edge angle and the lead angle are equal only for 45° milling cutters. The term "lead angle" is more commonly employed in the U.S, while "approach angle" is often used in Europe.
  • What is the difference between "face mill" and "shell mill"?
    These two terms relate to different and complementary features of milling cutters. They are not interchangeable. Milling cutters are classified according to the following main factors:
    • Machine surface type: plane, shoulder, 3D-surface, etc.
    • Cutter mounting method: on mandrel or arbor, in holder, directly in spindle
    • Structure: monolithic; assembled
    • Cutting part material: high speed steel, tungsten carbide, ceramics, etc.)
    "Face mill" characterizes a main field of application - milling flats by the cutting face of a mill "Shell mill" refers to the design configuration of a mill: the mill has a central bore for mounting on arbor. This configuration is typical for face mills.
  • What is the difference between heavy and heavy-duty milling?
    Sometimes the terms “heavy” and “heavy-duty” are used mistakenly as synonyms. In principle, “heavy milling” (and “heavy machining") relates to milling large-sized and heavy-weight workpieces on powerful machine tools and refers more to the dimensions and mass of a workpiece. “Heavy-duty” specifies a degree of tool loading and mainly characterizes a mode of milling.
  • Which cutting conditions are considered as unfavorable and which are unstable?
    Unfavorable cutting conditions include:
    • workpiece with skin (siliceous or slag, for example)
    • significantly variable machining allowance
    • considerable impact load due to non-uniform machined surface
    • surface with high-abrasive inclusions
    Unstable cutting conditions refer to the low stability of a complete system (machine tool, workpiece holding fixture, cutting tool, workpiece) due to:
    • poor tool and workpiece holding
    • high tool overhang
    • non-rigid machine tools
    • thin-walled workpiece
    The terms "unfavorable" and "unstable". are not interchangeable.
  • How is average chip thickness measured?
    In milling, the thickness of chips is not constant and varies during cutting, depending on several factors. The average chip thickness (hm) is a virtual parameter that characterizes mechanical load on a milling cutter and a machine tool. There are different methods for calculating hm. The most common method is to compute it in relation to the half of an angle of engagement, where the latter is the central angle that corresponds to the arc of a contact between a milling cutter and a workpiece.
    Фасонные фрезы
  • What is the difference between profile milling, milling contoured surfaces and form milling?
    Generally, these definitions mean the same thing and relate to milling 3-D surfaces. Such kind of machining is often named in shop talk as simply profiling.
  • Which industrial sectors are characterized by a great number of profile milling operations?
    First, it is the Die and Mold industry, then Aerospace but almost every branch requires profile milling tools in a varying degree, too.
  • Which types of tools are the most popular for profile milling?
    In rough milling for “pre-shaping” further 3-D surfaces, process planners use different tools and even general-duty 90° milling cutters. Fast Feed milling cutters* are very efficient means for high-efficiency roughing. However, most of profile milling operations relate to toroidal and ball nose milling cutters because they ensure correct generation of a needed shape in every direction.

    * refer to the appropriate section in FAQ session
  • Are inserts with chip splitting action in ISCAR’s profile milling products?
    Yes. Moreover, exactly from MILLSHRED, a family of indexable milling cutters with round inserts, the serrated cutting edge of ISCAR milling inserts was started its way.
  • What is the effective cutting diameter of a profile milling tool?
    In profile milling, sue to the shaped, non-straight form of the tool, a cutting diameter is a function of a depth of cut; and it is not the same for different areas of the tool cutting edge that is involved in milling. The effective diameter is the largest true cutting diameter: maximum of the cutting diameters of these areas. In calculating cutting data, it is very important to consider the effective diameter, because the real cutting speed relates to the effective diameter, while the spindle speed refers to the nominal diameter of a tool.
  • Which types of profile milling tools ISCAR provides?
    ISCAR line of profile milling tools comprises Fast Feed*, toroidal, and ball nose cutters in the following design configurations:
    • tools with indexable inserts
    • solid carbide endmills
    • replaceable milling heads with MULTI-MASTER* adaptation

    * refer to the appropriate section in FAQ session
  • What is restmilling?
    Productive milling proposes applying more durable and rigid tools for high metal removal rate. In many cases the form and the dimensions of the tools do not allow for a cut in some area; for example, the corners of a die cavity. The remainder of the material in the areas is removed by restmilling – a method under a technological process where a tool of smaller diameter cuts the areas with residual stock.
    Монолитные фрезы
  • If ISCAR provides solid carbide endmills for machining all groups of engineering materials?
    Yes. ISCAR’s SOLIDMILL LINE consists of various families of solid carbide endmills that intended for machining different materials: steel, stainless steel, cast iron, ets. The line proposes a rich variety of tools, which covers all application groups according to ISO classification: P, M, K, N, S and H.
  • Which types of SCEM ISCAR offers as standard products?
    The majority are 90° endmills, then – ball nose cutters, tools for high feed (fast feed) milling, chamfering and deburring. Also, there are families of endmills that are designed specifically for high speed machining, in particular, by trochoidal milling technique.
  • What are advantages of trochoidal milling method?
    Usually trochoidal milling is applied to machining slots and pockets. In trochoidal milling, a fast-rotating tool moves along arc and “slices” a thin but wide layer of material. When the layer is removed, the cutter advances deeper into the material radially and then repeats the slicing. This method ensures uniform tool engagement and stable average chip thickness. Therefore, the tool experiences constant load that causes uniform wear and predictable tool life. The small thickness of sliced material significantly reduces heat impact on the tool, on the one side, and ensures increasing the number of the tool teeth, on the other hand. As a result, the method ensures very high metal removal rate with considerably decreased power consumption and improved tool life.
  • What is the secret of CHATTERFREE geometry?
    CHATTERFREE is a general name of specific design for several families of ISCAR SCEM. The main CHATTERFREE features are: unequal angular pitch of a cutter teeth and variable helix angle. This concept results in substantial reducing or even eliminating vibrations during cutting that obviously dramatically improves performance and tool life.
  • Why FINISHRED endmills are often called as “Two in One”?
    Usually, the FINISHRED endmills feature 4 flutes, two serrated teeth and two continuous teeth. Thus, they combine two cutting geometries: rough (the serrated teeth with ship splitting action) and finish (the continuous teeth). This is a reason why FINISHRED SCEM are called “Two in One”. They enable running at rough machining parameters, resulting in semi-finish or even finish surface quality. Such a single tool (“One”) can replace the rough and finish endmills (“Two”), dramatically reducing cutting time and power consumption, and increasing productivity.
  • Does ISCAR provides instructions for regrading solid carbide endmills?
    Yes. Every catalogue and various technical leaflets and brochure contain this kind of information. Needless to add, that our local representatives are ready to help in every issue, which relates to regrinding SCEM.
  • What is a length series?
    Solid carbide endmills of the same type and the same diameter often vary in overall length within a family. According to the length gradation there are short, medium and long series. Sometimes, additional series, like extra-short or extra-long are used, too. Generally, short-length endmills ensure highest strength and rigidity whereas the extra-long SCEM are intended for long-reach applications.
  • What is a slot drill?
    “Slot drill” is a name of an endmill that can cut straight down. Slot drills have at least one center cutting tooth. Primary use of the slot drills is milling key slots. Normally, the slot drills are two-flite mills, but often they have three and even four flutes.
  • ISCAR ball nose SCEM have 2 or 4 flutes (teeth). How to choose a more suitable number of flutes for a ball nose endmill?
    The all-purpose 4 flute ball nose solid carbide endmills give a universal robust and production solution for various applications, especially for semi-finish and finish operations. Oppositely, the 2 flute endmills with greater chip gullet are more suitable for rough machining, ensuring better chip evacuation. Also, using the 2 flute tools is a workable method for fine finishing due to less accumulated error, which depends on the number of teeth. In milling with shallow depth of cut calculating feed per tooth should take into consideration only 2 effective teeth; and the advantages of a multi-flute design are diminished. The 2 flute SCEM are more preferable here.
  • Does ISCAR SCEM line propose miniature endmills?
    The answer depends on a definition, what is miniature. There is no distinct border between “mini”, “micro”, “miniature” and so on, in many slogans or tool brand names. Of course, despite the lack of strict and commonly accepted definitions, everyone realizes the range of diameters, which relates to these terms. ISCAR SCEM lines includes endmills featuring diameters of tenths of mm. For example, the standard ball nose endmills, which are intended for processing ribs for hard materials, start from minimal diameter 0.1 mm.
  • Does ISCAR provide solid carbide endmills for machining all groups of engineering materials?
    ISCAR’s SOLIDMILL line consists of various families of solid carbide endmills that are intended for machining different materials: steel, stainless steel, cast iron, etc. The line offers a rich variety of tools covering all application groups under ISO classifications P, M, K, N, S and H.
  • Which types of solid carbide endmills does ISCAR offer as standard products?
    ISCAR’s standard solid carbide endmill products include 90° endmills, ball nose cutters, and tools for high feed (fast feed) milling, chamfering, and deburring. ISCAR also offers families of endmills designed specifically for high speed machining that apply trochoidal milling techniques.
  • What are the advantages of the trochoidal milling method?
    Usually, trochoidal milling is applied to machining slots and pockets. In trochoidal milling, a fast-rotating tool moves along an arc and “slices” a thin but wide layer of material. When the layer is removed, the cutter advances deeper into the material radially and then repeats the slicing. This method ensures uniform tool engagement and stable average chip thickness. The tool experiences constant load, causing uniform wear and predictable tool life. The small thickness of sliced material significantly reduces heat impact on the tool and ensures an increase in the number of tool teeth. This method results in a very high metal removal rate with considerably decreased power consumption and improved tool life.
  • What is the secret of CHATTERFREE geometry?
    CHATTERFREE represents a design utilized in several ISCAR solid carbide endmill families. The main CHATTERFREE features are unequal angular pitch of cutter teeth and variable helix angle. This concept results in substantially reducing or even eliminating vibrations during cutting, which significantly improves performance and tool life.
  • What is a variable helix?
    The term "variable helix" refers to the helix angle in vibration-free designs of solid carbide endmills (SCEM), as are found in ISCAR CHATTERFREE products. A typical SCEM features helical teeth and the helix angle determines the cutting edge inclination of a tooth. In traditionally designed endmills, the helix angle is the same for all flutes, but it varies in vibration-free configurations.
    The term “variable helix” is commonly understood to represent two design features: 1) Combining flutes with unequal helix angles where the angles are constant along every flute.
    2) Helix angle varies along the flute.
    However, the term “variable helix” is correct only in relation to design feature 1 and the term “different helix” should be used to specify design feature 2.
  • Why are FINISHRED endmills often referred to as “Two in One”?
    FINISHRED endmills feature four flutes, two serrated teeth and two continuous teeth. This facilitates the integration of two cutting geometries into a single tool: rough (serrated teeth with chip splitting action) and finish (continuous teeth), so gaining the “two in one” appellation. By running at rough machining parameters, semi-finish or even finish surface quality can be achieved. One such tool can replace two rough and finish endmills, reducing cutting time and power consumption while increasing productivity.
  • Does ISCAR provide instructions for regrinding solid carbide endmills?
    Yes. All catalogues, as well as relevant technical leaflets and brochures, contain instructions for regrinding solid carbide endmills, and ISCAR local representatives are available to advise on this issue.
  • What is a length series?
    Solid carbide endmills of the same type and the same diameter often vary in overall length within a family. According to the length gradation, there are short, medium and long series. Additional series such as extra-short or extra-long can also be applied. As a general rule, short-length endmills ensure highest strength and rigidity whereas extra-long solid carbide endmills are intended for long-reach applications.
  • What is a slot drill?
    “Slot drill” is a name of an endmill that can cut straight down. Slot drills have at least one center cutting tooth and are used mainly to form key slots. Slot drills are typically two-flute mills, but they can have three and even four flutes.
  • ISCAR ball nose solid carbide endmills have two or four flutes (teeth). How should the correct number of flutes for a ball nose endmill be chosen?
    The all-purpose four flute ball nose solid carbide endmills provide a universal and robust production solution for various applications, especially for semi-finish and finish operations. Two flute endmills have a larger chip gullet, which makes them more suitable for rough machining as they ensure better chip evacuation. Two flute tools are also considered to be a workable method for fine finishing due to a lower accumulated error, which depends on the number of teeth. When milling with shallow depth of cut, calculating feed per tooth should take into consideration only 2 effective teeth; as the advantages of a multi-flute design are diminished.
  • Does the ISCAR solid carbide endmill line include miniature endmills?
    ISCAR solid carbide endmill lines include endmills with diameters of tenths of mm. For example, the standard ball nose endmills, which are intended for processing ribs for hard materials, start from a minimal diameter of 0.1 mm.
    MULTI-MASTER
  • Как головка устанавливается в хвостовик?
    Фрезерная головка со стороны хвостовика имеет две базовые поверхности: короткую коническую поверхность и торцевую плоскость. Коническая поверхность обеспечивает высокую концентричность соединения, а плоскость – базирование относительно торца оправки. Резьба на хвостовике обеспечивает надежное закрепление головки в оправке. Таким образом хвостовик головки имеет два основных элемента: поверхности базирование и резьбовую часть. Для закрепления головки сперва необходимо затянуть головку вручную, а затем затянуть с помощью ключа. Головка имеет специальные лыски под ключ.
  • Какие преимущества есть у торцевого контакта?
    Во-первых, торцевой контакт значительно повышает устойчивость сборного инструмента - хвостовика и головки, а также способность выдерживать ударную нагрузку при фрезеровании. Этот фактор способствует стабильному резанию, максимально снижает вибрации и энергопотребление. Во-вторых, торцевой контакт обеспечивает высокую повторяемость вылета головки относительно хвостовика. Как результат- отсутствие в необходимости дополнительной настройки после замены головки - минимальное время установки - оператор может заменить головку без необходимости извлечения хвостовика из шпинделя станка.
  • Что означает термин "начальный зазор"?
    При затягивании головки, оператор начинает крутить головку вручную. Головка останавливается в какой-то момент и небольшой зазор остается между торцевым контактом головки и хвостовиком. С этого момента последующее затягивание головки возможно только при использовании ключа. Затягивание головки вызывает упругую деформацию с прилегающей контактной областью хвостовика в радиальном направлении. Вышеупомянутый зазор называется "начальный" и является важной особенность соединения MULTI-MASTER. Размер зазора составляет несколько десятых миллиметра, в зависимости от размера резьбы.
  • Почему резьбовое соединение MULTI-MASTER имеет специальный профиль?
    Головки MULTI-MASTER изготавливаются из карбида вольфрама. Это очень твердый и жаропрочный материал, он снижает ударную вязкость, например, при обработке высокоскоростной стали. Поэтому, основная проблема, которую нужно решить при изготовлении вольфрамо-карбидной резьбовой части - это сведение к минимуму концентраторов напряжений. Кроме того, резьбовое соединение MULTI-MASTER имеет относительно малые размеры: диаметры резьб приблизительно 4-15 мм. Такие размеры и необходимость преодолевать высокие эксплуатационные нагрузки ограничили высоту профиля резьбы. Вышеупомянутые моменты делают затруднительным использование стандартной резьбы, что привело к появлению специальной формы резьбы. Вот почему, ISCAR разработал специальную профильную резьбу, которая получила обозначение "T-образная резьба".
  • Какие виды головок MULTI-MASTER предлагает ISCAR?
    Компания ISCAR предлагает различные формы головок с углами в плане: 90°, 45°, 60°, и др. Головки различного профиля: сферические, тороидальные, с вогнутыми радиусами и др. Головки для фрезерования с высокими подачами. Головки для фрезеровании пазов и канавок различного профиля Головки для резьбофрезерования Головки для сверления центровочных отверстий различных типов Головки для гравировки. Фрезерные головки имеют различное число зубьев, углы наклона винтовой канавки, степени точности, а также геометрии заточки для эффективной обработки различных конструкционных материалов.
  • Что такое фрезерная головка экономичного типа?
    Существует 2 типа концевых фрезерных головок MULTI-MASTER. Первый тип концевых фрезерных головок MULTI-MASTER такой же, как и стандартные концевые фрезы ISCAR, но отличаются вылетом и длиной режущей кромки. Основное преимущество этого типа - это широкий ассортимент (практически, как стандартная серия твердосплавных фрез). На чистовых операциях и при обработке закаленных материалов увеличение числа зубьев делает обработку более производительной и стабильной. Головки первого типа производятся из ступенчатой цилиндрической заготовки методом шлифования. Ко второму типу относятся головки экономичной серии. Форма головки формуется перед прессованием и спеканием с небольшим припуском. Дальнейшие шлифовальные операции определяют форму головки и ее точность. Головки этого типа имеют очень прочный режущий зуб, который позволяет увеличить подачу по сравнению с головками первого типа. Технология прессования позволяет производить различные сложные формы головок, которые проблематично выполнить шлифованием из цилиндрических заготовок. Головки экономичного типа имеют только два режущих зуба.
  • Почему ключи MULTI-MASTER имеют два различных зева с разных сторон?
    С одной стороны ключ имеет зев схожий с обычным гаечным ключом и предназначен для головок MULTI-MASTER первого типа, выполненных из цилиндрических заготовок. С другой стороны зев ключа предназначен для головок экономичного типа.
  • Есть ли в семействе MULTI-MASTER инструменты для обработки отверстий?
    Да, есть. В серии MULTI-MASTER представлены головки с углом в плане 45°, 30° и 60°, предназначенные для снятия фасок, но также могут применяться для операций зенкерования и центровки. Также в серии представлены комбинированные сверлильные головки для обработки центровочных отверстий разного типа.
  • Является ли применение твердосплавных головок для центрования разумным решением, т.к. существуют различные недорогие стандартные комбинированные двухсторонние центровочные сверла из быстрорежущей стали?
    По сравнению с вышеупомянутыми комбинированными сверлами из быстрорежущей стали твердосплавные сверлильные головки позволяют увеличить стойкость инструмента. Головки работают на значительно более высоких режимах резания, следовательно, это приводит к повышению производительности. Поэтому мы рекомендуем проверить текущую себестоимость продукции, а затем принять решение, учитывая все факторы.
  • С какой точностью изготавливаются головки?
    Номинальный диаметр концевых фрезерных головок нормальной точности соответствует допускам: e8 для головок, изготавливаемых из цилиндрических заготовок; h9 для головок экономичного типа. Точные головки для чистовой обработки поверхностей выполнены с полем допуска h7, а головки для фрезерования алюминия – h6. Допуск цилиндрической части головок для снятия фасок, центрования и зенкерования h10.
  • Какая точность повторяемости головок MULTI-MASTER при установке в хвостовике?
    Как уже упоминалось в ответе на вопрос #2, одно из главных преимуществ системы базирования головок – это высокая повторяемость при смене. Вылет инструмента находится в пределах ±0.01 мм для большинства головок MULTI-MASTER
  • ISCAR может предложить головки MULTI-MASTER для обработки закаленной стали?
    Да. Головки изготавливаются из высокопрочного, жаропрочного, субмикронного твердого сплава и имеют строгие допуски по размеру.
  • Какие есть основные типы хвостовиков и для чего они предназначены?
    Хвостовики доступны в различных исполнениях: гладкие цилиндрические и с шейкой. Шейка хвостовика может быть прямой или конической. Прямые хвостовики и хвостовики с цилиндрической шейкой называются тип А – хвостовики общего применения и и предназначены для различных операций. Есть также усиленная версия, предназначенная в основном для фрезерования пазов и фрезерования с высокой подачей. Усиленный хвостовик имеет лыску, которая позволяет его закреплять в оправки типа Weldon. Тип B – усиленные хвостовики с относительно короткой конической шейкой с углом конуса 5° на сторону. Данный тип хвостовиков отличается повышенной прочностью корпуса, основное применение - это тяжелая обработка. А где тип C? Для продолжительной обработки с большим вылетом, хвостовик типа D с длинной конической шейкой может служить прекрасным решением. Хвостовик имеет угол конуса 1°, он специально предназначен для фрезерования глубоких карманов и полостей, отвесных стенок и т.д. Этот хвостовик не следует применять при тяжелонагруженной обработке. Для операций, где не требуется большой вылет серия инструментов MULTI-MASTER предлагает хвостовики с цанговым приспособлением. Хвостовик устанавливается непосредственно в цанговый патрон. Размещение хвостовика в цанговом патроне повышает жесткость и точность при обработке и уменьшает вылет инструмента по отношению к базовой торцевой поверхности шпинделя станка. Также линейка MULTI-MASTER включает в себя гладкие стальные цилиндрические хвостовики значительной длины (как минимум 10 диаметров). Они предназначены в первую очередь для производства специальных инструментов различных конфигураций при помощи дополнительной обработки хвостовиков для придачи требуемой формы. Такая обработка может быть выполнена самим заказчиком. В действительности это заготовки с Т-образной фрезой. Для удобства дополнительных обработок (точение, внешнее шлифование и т.д.) на задней поверхности хвостовиков имеются центральные отверстия. Линейка инструментов MULTI-MASTER содержит различные расширения и переходники для соединения с другими модульными инструментальными системами (например FLEXFIT).
  • Из какого материала изготовлены хвостовики? Как правильно следует выбирать материал?
    Хвостовики изготовлены из следующих материалов: сталь, твердый сплав и тяжелый металл (сплав, содержащий более 90% вольфрама). В рамках функциональных возможностей стальной хвостовик самый универсальный. Благодаря значительной прочности твердого сплава твердосплавный хвостовик предназначен преимущественно для чистовой и получистовой обработки, обработки с большим вылетом и фрезерования цилиндрических канавок. В случае нестабильного резания использование хвостовика из тяжелого металла обеспечит прекрасные результаты обработки благодаря вибропрочным свойствам тяжелого металла. Однако, данные хвостовики не рекомендуются применять для тяжелонагруженной обработки.
  • Хвостовики MULTI-MASTER оснащены внутренними каналами для подвода охлаждающей жидкости через весь корпус инструмента?
    Да, у хвостовиков MULTI-MASTER есть внутренние каналы для подвода охлаждающей жидкости через инструмент.
  • Можно ли устанавливать хвостовики MULTI-MASTER в термопатроны и цанги?
    Твердосплавные хвостовики и хвостовики из тяжелого металла (см. ответ на 14 вопрос) подходят для установки в термопатрон, в то время как стальные хвостовики не рекомендуется устанавливать в термопатроны и цанги.
  • Необходимо ли смазывать Т-образную резьбу при установке головок в хвостовик?
    Нет. Не применяйте смазочные материалы для резьбового соединения MULTI-MASTER!
    Большие подачи
  • For which type of fast feed milling cutters does ISCAR manufacture tools?
    ISCAR’s line of fast feed milling cutters comprises tools carrying indexable inserts, Multi-Master tools and solid carbide end mills.
  • Which milling operation is more effective for applying FF milling cutters?
    The most effective applications for FF milling cutters are rough milling planes, pockets and cavities.
  • What is the meaning of the “Triple F” or "FFF" that is often mentioned in ISCAR technical editions and presentations?
    "FFF" refers to fast feed face milling or fast feed facing. Rough milling planes is one of most the efficient and widespread applications for FF cutters. The operation usually relates to face milling, so the FFF acronym refers usually to fast feed face milling. FFF can also mean fast feed facing, as milling plane operations are often known as facing.
  • Fast feed milling is considered as a high-efficiency metal removal technique when machined workpieces are made from steel or cast iron. Can FF milling cutters be applied to machining difficult-to-cut materials like titanium or high temperature alloys?
    FF milling cutters may be used in machining difficult-to-cut materials. The cutting geometry in this case differs from the geometry of general-duty FF milling tools that are intended for steel and cast iron. In addition, feed per tooth is significantly smaller compared to machining steel and cast iron; however it is much higher than the feed values that are recommended for traditional methods.
  • What are MF milling tools?
    MF means “moderate feed”: moderate comparing with “fast” in FF milling but faster than the standard in traditional milling. The MF method is intended for increasing productivity when using slow low-power machines, milling heavy workpieces, etc.
    Пазы и канавки
  • Which tools are used for milling slots?
    Generally speaking, milling tools of different types – side milling cutters, endmills, extended flite (long-edge) milling cutters and even face mills – are suitable for milling slots and grooves. However, only the side milling cutters with teeth on face and periphery are designed especially for machining slots and grooves, while the others are intended for various milling operations. ISCAR’s line of slot milling tools comprises the side milling cutters.
  • What is the difference between “slot” and “groove”?
    The words “slot” and “groove” are often synonymous. But if “slot” usually relates to a narrow, comparatively long, mainly longitudinal opening that is usually open-ended (at least from one side); “groove”, as a rule, means a circular (called “undercut”) or helical channel. It is been said that “a slot is an open-ended groove”.
  • Slot milling tools are often referenced as slotting tools. Is this correct?
    The word “slotting”, commonly known as “slot milling”, is widespread in shop talk but the two actions are not identical or interchangeable. Slotting refers specifically to a stage in planning or shaping – a machining process where a single-point cutting tool moves linearly and piston wise, and a workpiece is fixed or moves only linearly concurrent with the tool.
  • Why are slot milling cutters called side and face milling cutters?
    A slot milling cutter has teeth on its face and periphery, and features a cutting face and sides for the simultaneous machining of three surfaces: the bottom and the two sidewalls of a slot.
  • What are the main types of slot milling cutters?
    The slot milling cutters differ in their adaptation (mounting methods). They have either arbor hole or shank-type configurations or, alternatively, interchangeable cutting heads for modularly assembled tools.
  • What is ISCAR’s program for slot milling cutters?
    ISCAR is engaged in developing slot milling cutters in various fields:
    - Cutters carrying indexable inserts
    - Assembled Multi-Master slot milling tools with replaceable heads
    - Assembled T-SLOT milling cutters with replaceable solid carbide cutting heads
  • Which slot is defined as narrow?
    The term “narrow slot” generally defines a deep slot of small width. A more rigorous but empirical rule considers a “narrow slot” to be the slot with a width less than 5 mm and a depth of at least 2.5 times the width.
    Наборная режущая кромка
  • Why “extended flute” cutters?
    The cutting blade of an extended flute cutter consists of a set of indexable inserts that are placed gradually with a mutual offset of one another. Compared to an ordinary indexable mill whose length of cut is limited by the cutting edge of its insert, the cutting length of the extended flute cutter is significantly larger – it is “extended” due to the set of inserts.
  • What are the other technical terms for extended flute cutters?
    Extended flute cutters are also referred to as long-edge cutters and porcupine cutters (known as “porkies” in shop talk).
  • What are the main applications for extended flute cutters?
    Extended flute cutters are designed for high-performance rough milling: milling deep shoulders (known as “deep shouldering” in shoptalk), deep pockets and cavities (“pocketing”), and wide edges (“edging”).
  • Can extended flute cutters be applied to semi-finish operations?
    Yes. There are solutions that ensure this type of machining. For example, ISCAR HELITANG FIN LNK cutters carrying tangentially clamped peripherally ground inserts were designed especially for semi-finish milling.
  • Why do many types of indexable inserts for extended flute cutters feature a chip splitting design?
    Extended flute cutters work in heavy-load conditions. The following factors considerably improve cutter performance, which is why a chip splitting geometry is often integrated into the extended flute cutters’ design:
    • Chip splitting results in a wide chip being divided into small segments, which improves chip evacuation and chip handling.
    • The action of chip splitting strengthens vibration dampening of a cutter.
    • In many cases, chip splitting reduces cutting forces and power consumption, and leads to less heat generation during milling.
    • The small segments have fewer tendencies to be re-cut; this greatly improves rough milling of deep cavities and increases tool life.
  • What are the design configurations of ISCAR’s extended flute cutters?
    The ISCAR standard line of extended flute cutters comprises various designs:
    • Shell mills
    • Mills with cylindrical shanks (smooth or with flats, known as “Weldon-type”)
    • Mills with tapered shanks (7:24, HSK)
    • CAMFIX polygonal taper shank and replaceable cutting heads with a FLEXFIT connection
  • Can ISCAR’s extended flute cutters incorporate internal coolant supply channels?
    Most of ISCAR’s extended flute cutters have an internal channel for coolant supply through the body of the cutter.
  • Does ISCAR recommend extended flute cutters for milling titanium?
    Yes. Milling titanium usually involves removing considerable machining stock. It is a process with a significant buy-to-fly ratio and a large amount of metal needs to be removed. Extended flute cutters possess significant performance advantages in this area and their use can dramatically cut cycle time.
    Фрезерование зубчатых колес
  • Does ISCAR provide tools for milling gears and splines?
    ISCAR’s current tool program, for milling spur gears with straight teeth and splines, has been developed to include three types of cutter:
    • cutters with indexable inserts
    • cutters with replaceable cutting heads based on the T-SLOT concept
    • cutters with replaceable MULTI-MASTER cutting heads
  • For which method of generating teeth are ISCAR’s milling tools intended?
    At present, ISCAR produces tools to generate tooth profiles by form milling.
  • When talking about generating a tooth profile, what is meant by “form milling”?
    Form milling is one of the methods for generating tooth profiles. In form milling, a milling cutter with a working shape like the contour of a tooth space, machines every tooth individually; and a workpiece is indexed through a pitch after generating one space.
  • Are there other methods of generating tooth profiles, apart from form milling?
    The principal methods (in addition to form milling) include gear hobbing, which uses a hob, a cutter with a set of teeth along a helix that mills the workpiece and that rotates together with the workpiece in a similar way to a worm-wheel drive; gear shaping with the use of a gear-shaping cutter, a rotating tool that visually resembles a mill; and by power skiving - a technique that combines gear milling and gear shaping. There are also other methods of generating teeth profiles, such as gear broaching, gear grinding, and gear rolling.
  • Is milling gear teeth the final operation of a gear-making process?
    In general, milling gear teeth is not the final operation in the gear-making process. After this operation, it is necessary to remove burrs and then the sharp edges of the teeth should be rounded or chamfered, for better engagement. Gear rounding, and gear chamfering operations are necessary to avoid quenching gears with sharp edges, which may cause various micro cracks that affect gear life. In addition, milling teeth ensures parameters that feature only gears of relatively low accuracy. As manufacturing precise gears demands tougher characteristics of accuracy and surface finish, other processes such as gear shaving, gear grinding, gear honing, etc., are also applied.
  • Usually, form gear milling relates mainly to individual and low-batch production. Why do manufacturers of general-purpose cutting tools, including ISCAR, include form gear milling cutters in their program for standard lines?
    With batch manufacturing, milling gear teeth is made on specific gear hobbing machines as gear hobbing productivity is substantially higher. However, advanced multifunctional machine tools increasingly widen the range of machining operations that can be performed. Technological processes developed for these machines are oriented to maximize machining operation for one-setup manufacturing, creating a new source for more accurate and productive manufacturing. Milling gears and splines is one of the operations suitable for performing on the new machines.
    These new machines require appropriate tooling and manufacturers of general-purpose cutting tools are reconsidering the role of gear-milling cutters in their programs for standard product lines.
  • What is the module in gearing?
    The module (modulus) is one of the main basic parameters of a gear in metric system. It is measured in mm. The module m of a gear with pitch diameter d and number of teeth z is the ratio of the pitch diameter to the number of teeth (d/z).
  • Does the inch (Imperial) system of gearing also use the module as a basic parameter in gearing?
    The inch (Imperial) system operates another basic parameter: the diametral pitch. This is the number of gear teeth per one inch of the pitch diameter. If a gear has N teeth and it features pitch diameter D (in inches), diametral pitch P is calculated as N/D. Sometimes, when specifying gears in inch units, the so-called English module is used. In principle, this module has the same meaning as the module in the metric system, e.g. the ratio of the pitch diameter and the number of teeth; however, the pitch diameter should be taken in inches and not in millimeters like in the metric system.
  • What is the difference between gear and splines?
    Gears in a gear train are intended for transmitting rotational movement between 2 shafts (while the axes of the shafts are not always parallel) and, in most cases, this transmission is combined with changing torque and rotational speed. The gears are used also for transforming rotational movement into linear movement. A splined joint is a demounted connection of two parts to transfer the torque from one to another. The torque is not changed here.
  • What is the difference between splines and serrations?
    Within this context, serrations represent a type of spline. The serrations feature V-shaped space between teeth. They are commonly used in small-size connections.
    Обработка канавок
  • Какой инструмент лучше всего подойдет для тяжелонагруженной прорезки канавок?
    Для прорезки канавок используйте пластины серии DOVEIQGRIP TIGER с шириной 10-20 мм. Для точения и прорезки канавок используйте пластины серии SUMO-GRIP TAGB с шириной 6-14 мм.
  • Какой стружколом лучшего всего подойдет для обработки вязких материалов?
    Используйте стружколом N-типа, на пластинах GIMN для наружной обработки шириной 2-5 мм и на пластинах GEMI/GINI для внутренней обработки.
  • Какие сплавы лучше всего подходят для обработки ISO-M / ISO-P материалов?
    Первый выбор - это сплав IC808. Если вам необходим более твердый сплав с большей износостойкостью, выбирайте IC807. А если требуется более прочный сплав с большим сопротивлением ударной вязкости (прерывистое резание), используйте IC830.
  • Какой сплав следует выбрать для обработки ISO-S материалов (жаропрочные сплавы)?
    Используйте сплав IC806 для обработки жаропрочных сплавов. Для более твердых материалов ISO-S (HRC>35), используйте IC804
  • Какие державки для прорезки канавок следует использовать на прутковых автоматах?
    Используйте инструменты серии GEHSR/GHSR с боковым закреплением, которое обеспечивают как фронтальный, так и задний доступ к державке, что очень удобно на автоматах продольного точения (в отличие от обычного верхнего крепления).
  • Какие сплавы/геометрии рекомендуется использовать для прорезки и точения канавок из чугуна?
    Используйте пластины TGMA/GIA с K-фаской вместе со сплавами IC5010 или IC428.
  • Какие сплавы/геометрии рекомендуется использовать для прорезки и точения канавок из алюминия?
    Используйте пластины GIPA/GIDA/FSPA с очень острой позитивной режущей кромкой и полированной верхней поверхностью в сочетании с твердыми сплавами IC20 или ID5 с покрытием PCD. Круглые пластины FSPA - это лучший выбор для ширины 6-8 мм, благодаря прекрасной системе закрепления.
  • Какие инструменты/пластины следует выбрать для прорезки наружных канавок расточными державками малых диаметров?
    Для диаметра 2-10 мм используйте пластины PICCO, которые устанавливаются в адаптеры PICCO ACE. Для расточного диаметра 8-20 мм используйте пластины GIQR, которые устанавливаются на расточные державки MGCH. Для расточного диаметра 12-25 мм используйте пластины GEMI/GEPI, которые устанавливаются на расточные державки GEHIR.
  • Как можно свести к минимуму вибрации?
    Используйте минимальный возможный вылет инструмента. Работайте с постоянным числом оборотов в минуту. Если потребуется, то снижайте число оборотов в минуту. Уменьшите ширину пластины, чтобы снизить силу резания. Для ширины 6-8 мм используйте антивибрационные инструменты WHISPERLINE.
  • В каких случаях следует использовать инструменты JETCUT с внутренними каналами для подвода охлаждающей жидкости?
    Инструменты JETCUT с функцией подвода охлаждения под высоким давлением (10 – 340 бар) для различных операций, охлаждающая жидкость направляется прямо на режущую кромку, за счет чего увеличивается срок службы инструмента и улучшается стружкоформирование.
    Отрезка
  • Какие инструменты ISCAR рекомендуются для отрезки?
    • Для отрезки детали диаметром до 38 мм, используйте двухсторонние пластины DO-GRIP.
    • Для отрезки детали диаметром до 38 мм, используйте односторонние пластины TANG GRIP, для отрезки 40 мм диаметра- используйте экономичную пятикромочную пластину PENTA IQ.
  • Какой сплав рекомендуется для обработки стали (ISO P)?
    • Сплавы IC808 и IC908.

    Какой сплав рекомендуется для обработки нержавеющей стали (ISO M)?
    • Сплавы IC830 и IC5400.
     
  • Какая геометрия/стружколом пластин рекомендуется для обработки стали?
    • Используйте геометрию "C", например, DGN 3102C.
    Какая геометрия/стружколом пластин рекомендуется для обработки нержавеющей стали?
    • Используйте геометрию "J", например, DGN 3102J.
  • Какие инструменты лучшего всего использовать для обработки мелкоразмерных деталей?
    Первый выбор- это двухсторонние пластины DO-GRIP с с позитивной геометрией, например DGN 3102J и DGN 3000P, а также инструменты с маленькими размерами головок, например DGTR 12B-1.4D24SH. Второй выбор- это экономичные пятикромочные пластины PENTA CUT, например PENTA 24N200J020 IC1008 с державкой PCHR 12-24.
  • Какие пластины лучшего всего подходят для тяжело-нагруженной обработки?
    Используйте односторонние пластины TANG GRIP- выбирайте ширину пластины согласно диаметру детали. Для тяжело-нагруженной обработки, ISCAR предлагает пластину с шириной 5-12.7 мм, сплав IC830 и геометрию пластины со стружколомом C-типа.
  • Как уменьшить количество грата на детали?
    Используйте пластины с наименованиями R или L- это пластины с углом в плане, поэтому режущая кромка не является прямой. Также, используйте пластины с позитивной передней поверхностью, например DGR -3102J-6D (6D = 6° угол в плане). Настоятельно рекомендуется снизить значение подачи на 50% при чистовом резании.
  • Как улучшить срок службы пластины?
    Проанализируйте причину поломки пластины и выберите сплав в соответствии, если это износ пластины, то используйте более твердый сплавы такие как IC808 или 807, если случилась поломка пластины, то используйте сплав IC830.
  • Какая пластина лучшего всего подходит для прерывистого резания?
    Используйте пластину с негативной передней поверхностью, стружколом С-типа и сплавом IC830.
  • Как улучшить стружкоформирование, когда вырабатывается длинная стружка?
    Выбирайте правильный стружколом и параметры резания, что получить хорошее стружкоформирование. Выбирайте более агрессивный стружколом. Для того, чтобы увеличить подачу, пожалуйста обратитесь в руководство пользователя ISCAR.
  • Как улучшить прямолинейность поверхности детали?
    Используйте нейтральную пластину и стойкий инструмент с минимальным вылетом. Настройте параметры резания.
    Сверление
  • Какой расход охлаждающей жидкости рекомендуется?
    Все зависит от диаметра инструмента. Например минимальной расход охлаждающей жидкости для сверла SUMOCHAM 6 мм - 5 литров в минуту. Для сверла 20 мм - 18 литров в минуту. Для получения подробной информации пожалуйста обратитесь к нашему каталогу продукции, серия SUMOCHAM стр. 491.
  • Какое давление охлаждающей жидкости рекомендовано?
    Все зависит от диаметра и длины инструмента. Например, минимальное давление охлаждающей жидкости для сверла SUMOCHAM диаметром 6 мм и длиной 8xD - 12 бар. Для сверла с диаметром 25 мм и длиной 12xD - 4.5 бар. Для получения подробной информации пожалуйста обратитесь к нашему каталогу продукции, серия SUMOCHAM стр. 491.
  • Какую прямолинейность поверхности можно получить, используя инструменты серии SUMOCHAM?
    При стабильной настройке отклонение может варьироваться от 0,03 мм до 0,05 мм на каждые 100 мм глубины сверления.
  • Каков правильный режим глубокого сверления с предварительным сверлением и следующим инструментом?
    Во избежания ошибок сверлить предварительное отверстие рекомендуется той же самой геометрией, которую вы используете при дальнейшем сверлении. Для получения подробной информации пожалуйста обратитесь к нашему каталогу продукции, стр. 492.
  • Можно ли рассверливать отверстия сверлами SUMOCHAM?
    Нет, нельзя. Серия SUMOCHAM не предназначена доя рассверливания. Может произойти поломка инструмента и головки.
  • Какая геометрия рекомендуется для обработки титана?
    Первый выбор - это ICG. Второй выбор - это ICP.
  • Возможно ли переточить головки SUMOCHAM?
    Да, головки с геометриями ICP/ICK/ICM/ICN можно перетачивать до 3-х раз. Для более детальной информации, обратитесь в наш каталог стр. 502-504. Важно: Головки с геометриями FCP/HCP/ICG/ICH можно перешлифовать только в Израиле.
  • Какое максимальное разрешенное биение сверл SUMOCHAM?
    Чтобы получить отличную производительность и продолжительный срок службы инструмента, радиальное и осевое биение не должно превышать 0.02 мм. Для получения подробной информации пожалуйста обратитесь к нашему каталогу продукции, стр. 490.
  • Возможно ли использовать сверла SUMOCHAM для прерывистого резания?
    Сверла SUMOCHAM не могут выдерживать прерывистое резание. Произойдет разжатие головки, вследствие чего она может выпасть.
  • Какие решения для обработки твердых материалов предлагает ISCAR?
    Для обработки твердых материалов мы рекомендуем использовать твердосплавные сверла SCD-AH, изготовленные из сплава IC903 или полустандартный вариант серии SUMOCHAM - головки ICH.
  • Какой адаптер рекомендуется использовать?
    Адаптер, наиболее подходящий для хвостовика инструмента. Например, если хвостовик круглой формы, то следует выбрать адаптер HYDRO. Для получения подробной информации пожалуйста обратитесь к нашему каталогу продукции, стр. 829.
  • Каким должен быть максимальный выход для выходного отверстия SUMOCHAM?
    Выход не должен быть больше 2-3 мм, чем диаметр режущей кромки головки сверла.
  • Какие решения для обработки алюминия рекомендуется применять?
    Ответ: все зависит от операции. В серию SUMOCHAM входят головки ICN - специальное решение для обработки цветных металлов.
  • Каковы признаки того, что произошел износ головок SUMOCHAM?
    Лучше способ узнать об износе головок - это рассмотреть их под микроскопом. Дополнительные признаки износа перечислены в нашем каталоге, стр. 493.
    Развертывание
  • Когда необходимо применять развертывание?
    Развертывание необходимо, когда требования к допуску или качеству поверхности очень жесткие и не могут быть достигнуты сверлением и растачиванием.
  • Для какого поля допуска подходят стандартные развертки?
    Стандартные развертки ISCAR подходят для IT7.
  • Стандартные развертки подходят для всех типов материалов?
    Стандартные развертки подходят для большинства материалов, но для обработки материалов ISO N и ISO S рекомендуется проконсультироваться с техническими специалистами, чтобы подобрать наилучшее решение.
  • Какой предположительный срок службы развертки?
    Поскольку существует множество факторов, которые влияют на срок службы развертки (материал, охлаждение, допуск, биение и т.д.), очень сложно установить срок службы инструмента и в каждом случае он индивидуален.
  • Возможно ли развертывание без подвода охлаждающей жидкости?
    Нет. Развертывание без подвода охлаждения невозможно; оптимальным является развертывание с внутренним подводом охлаждающей жидкости, но применение наружного охлаждения также допускается.
  • Какой припуск необходимо под развертывание?
    Рекомендуемый припуск зависит от обрабатываемого материала, диаметра развертки и инструмента для предварительной обработки отверстия. Как правило припуск составляет от 0.15 до 0.4 мм на диаметр.
  • Какое максимальное биение шпинделя станка возможно при развертывании?
    Максимальное допустимое биение при развертывании около 0.01 мм, но оно также зависит от размера и допуска. При биении более 0.01 мм следует использовать систему ADJ для его компенсации и регулировки.
    ISO
  • Как повысить производительность при обработке жаропрочных сплавов и материалов на никелевой основе керамикой ISCAR?
    ISCAR предлагает широкий ассортимент керамики, например IW7, для обработки жаропрочных сплавов и материалов на никелевой основе. Скорость резания нашей керамики в 10 раз выше чем у твердосплавных пластин - от 150 м/мин до 450 м/мин.
  • Какие типы стружколомов предлагает ISCAR в качестве первого выбора для обработки стали?
    ISCAR представляет новые стружколомы F3P, M3P и R3P для получистового и чернового точения. Стружколомы в сочетании со сплавами SUMO TEC обеспечивают высокую производительность, долгий срок службы инструмента, надежную обработку и отличное качество поверхности. Новые стружколомы позволяют уменьшить тепловыделение и избежать проблем со стружкой, которая налипает на заготовку и инструмент. Стружка расщепляется на мелкие сегменты, не наматывается на заготовку и эффективно эвакуируется из зоны резания.
  • Как улучшить стружкоформирование при использовани пластин CBN?
    Пластины CBN используются для обработки твердых материалов от 55 до 62 RC. Обычные пластины CBN производят длинную и закрученную стружку при точении закаленной стали. Длинная стружка отрицательно влияет на качество обработанной поверхности и может повредить заготовку. ISCAR разработал новую пластину CBN со шлифованным стружколомом, который позволяет добиться превосходного контроля стружкообразования и качества поверхности.
  • Как снизить вибрации расточной державки при работе с большим вылетом от 4xBD?
    Ежедневно операторы станков во всем мире сталкиваются с нежелательными вибрациями при резании металлов. Чтобы помочь преодолеть эти трудности научно-исследовательский отдел ISCAR разработал расточные державки WHISPERLINE с "живой" системой гашения вибраций, расположенной в корпусе инструмента. Новая серия позволяет значительно уменьшить или даже полностью исключить вибрации при работе с большим вылетом.
  • Какой первый выбор стружколомов ISCAR для обработки нержавеющей стали?
    ISCAR представляет новые стружколомы F3P, M3P и R3P для чернового, получистового и чистового точения. Стружколомы в сочетании со сплавами SUMO TEC обеспечивают высокую производительность, долгий срок службы инструмента, надежную обработку и отличное качество поверхности. Стружколом F3M с положительным передним углом для плавного резания, уменьшения сил резания и износа. Стружколом M3M с усиленной режущей кромкой и положительным передним углом для получистовой обработки нержавеющей стали. Стружколом R3M с усиленной режущей кромкой и положительным передним углом для черновой обработки нержавеющей стали.
  • Какой первый выбор стружколомов ISCAR для обработки нержавеющей стали?
    ISCAR представляет новые стружколомы F3P, M3P и R3P для чернового, получистового и чистового точения. Стружколомы в сочетании со сплавами SUMO TEC обеспечивают высокую производительность, долгий срок службы инструмента, надежную обработку и отличное качество поверхности. Стружколом F3M с положительным передним углом для плавного резания, уменьшения сил резания и износа. Стружколом M3M с усиленной режущей кромкой и положительным передним углом для получистовой обработки нержавеющей стали. Стружколом R3M с усиленной режущей кромкой и положительным передним углом для черновой обработки нержавеющей стали.
  • Какое основное преимущество охлаждения под высоким давлением?
    Основные преимущества инструментов JETCUT - это функция подвода охлаждающей жидкости под высоким давлением в зону резания, отличное стружкообразование, эффективное охлаждение и увеличенный срок службы инструмента. Применение охлаждения под высоким давлением незаменимо при обработке вязких материалов таких как жаропрочные сплавы, нержавеющая сталь, титан и т.д.
    Сплавы из керамики и пластины
  • Как повысить производительность при обработке жаропрочных сплавов и материалов на никелевой основе керамикой ISCAR?
    ISCAR предлагает широкий ассортимент керамики, например IW7 для обработки жаропрочных сплавов и материалов на никелевой основе. Скорость резания нашей керамики в 10 раз выше чем у твердосплавных пластин - от 150 до 450 м/мин.
  • Какие типы стружколомов предлагает ISCAR, в качестве первого выбора для обработки стали?
    ISCAR представляет новые стружколомы F3P, M3P и R3P для получистового и чернового точения. Стружколомы вместе со сплавами SUMO TEC обеспечивают высокую производительность, долгий срок службы инструмента, надежную обработку и отличное качество поверхности. Новые стружколомы позволяют уменьшить тепловыделение и избежать проблем со стружкой, которая налипает на заготовку и инструмент. Стружка расщепляется на мелкие сегменты, не наматывается на заготовку и эффективно эвакуируется из зоны резания.
  • Как улучшить стружкоформирование при использовани пластин CBN?
    Пластины CBN используются для обработки твердых материалов от 55 до 62 RC. Обычные пластины CBN производят длинную и закрученную стружку при точении закаленной стали. Длинная стружка отрицательно влияет на качество обработанной поверхности и может повредить заготовку. ISCAR разработал новую пластину CBN со шлифованным стружколомом, который позволяет добиться превосходного контроля стружкообразования и качества поверхности.
  • Как снизить вибрации расточной державки при работе с большим вылетом от 4xBD?
    Ежедневно операторы станков во всем мире сталкиваются с нежелательными вибрациями при резании металлов. Чтобы помочь преодолеть эти трудности научно-исследовательский отдел ISCAR разработал расточные державки с "живой" системой гашения вибраций, расположенной в корпусе инструмента. Новая серия WHISPERLINE позволяет значительно уменьшить или даже полностью исключить вибрации при работе с большим вылетом.
  • Как повысить производительность при обработке чугуна керамикой ISCAR?
    Серый чугун широко применяется в автомобильной промышленности. ISCAR предлагает широкий ассортимент керамики, например IS6 с покрытием SiAlON для высокопроизводительной обработки чугуна. Основное преимущество керамики IS6 - скорость резания в 3-4 раза выше, от 400 до 1200 м/мин, по сравнению с обычными твердосплавными пластинами.
  • Какие типы стружколомов предлагает ISCAR, в качестве первого выбора для обработки нержавеющей стали?
    ISCAR представляет новые стружколомы F3P, M3P и R3P для чернового, получистового и чистового точения. Стружколомы в сочетании со сплавами SUMO TEC обеспечивают высокую производительность, долгий срок службы инструмента, надежную обработку и отличное качество поверхности. Стружколом F3M с положительным передним углом для плавного резания, уменьшения сил резания и износа. Стружколом M3M с усиленной режущей кромкой и положительным передним углом для получистовой обработки нержавеющей стали. Стружколом R3M с усиленной режущей кромкой и положительным передним углом для черновой обработки нержавеющей стали.
  • Какое основное преимущество охлаждения под высоким давлением?
    Основные преимущества инструментов JETCUT - это функция подвода охлаждающей жидкости под высоким давлением в зону резания, отличное стружкообразование, эффективное охлаждение и увеличенный срок службы инструмента. Применение охлаждения под высоким давлением незаменимо при обработке вязких материалов таких как жаропрочные сплавы, нержавеющая сталь, титан и т.д.
    Резьба
  • Какой сплав лучше всего подходит для обработки нержавеющей стали?
    Сплав IC1007
  • Какой сплав лучше всего подходит для обработки жаропрочных сплавов?
    Сплав IC806
  • Какой сплав лучше всего подходит для обработки низкоскоростной обработки в нестабильных условиях?
    Сплав IC228
  • Каков наименьший рекомендуемый проход для профиля резьбы?
    Больше чем радиус скругления кромки
  • Почему это не является функцией стружколома?
    Глубина резания слишком мала, поэтому стружколом неэффективен.
  • Как можно улучшить контроль стружообразования?
    Чтобы улучшить контроль стружкообразования, следует выбрать правильный метод врезания: -Радиальная подача -Боковая подача -Чередование боковых подач
  • Как можно сократить время обработки?
    Используйте многозубые резьбовые пластины (2M, 3M). При использовании таких пластин можно сократить количество проходов. Это особенно важно в массовом производстве.
  • В чем разница между неполным и полным профилем пластины?
    Неполный профиль:
    - Для различных стандартов, шагов, углов профиль резьбы (60º или 55º).
    - Пластины с малым угловым радиусом подходят для наименьшего шага. Необходима дополнительная операция для завершения наружного/внутреннего диаметра.
    - Не рекомендуется для массового производства.
    - Нет необходимости в использовании разных пластин

    Полный профиль:
    - Обрабатывается полный профиль резьбы
    - Угловой радиус только для соответствующего шага резьбы
    - Рекомендуется для массового производства
    - Только для одного профиля резьбы
  • Как правильно выбрать подкладную пластину?
    Подкладные пластины для обеспечения положительного угла наклона используются при нарезании правой резьбы (RH) с использованием правосторонних державок (RH) или левой резьбы (LH) с использованием левосторонних державок (LH).
    Подкладные пластины для обеспечения негативного угла наклона используются при точении правой резьбы (RH) с использованием левосторонних державок (LH) или левой резьбы (LH) с использованием правосторонних державок (RH).
    Используйте подкладные пластины AE для наружных правосторонних державок (RH) и внутренних левосторонних державок (LH).
    Используйте подкладные пластины Al для внутренних правосторонних державок (RH) и наружных левосторонних державок (LH).
    Твердые сплавы
  • What is a tool material?
    In cutting tools, a tool material is the material from which the active (cutting) part of a tool is produced. This is the material that directly cuts the workpiece during machining.
  • How does ISCAR designate its tool materials?
    ISCAR’s system of designating tool material grades uses letters and numbers. The letters indicate the material group:
    IB – cubic boron nitride (CBN)
    IC – cemented carbide and cermet
    ID – polycrystalline diamond (PCD)
    IS – ceramics
    DT – cemented carbide with dual (CVD+PVD) coating
  • What is a carbide grade?
    A combination of cemented carbide, coating and post-coating treatment produces a carbide grade. Only one of these components - the cemented carbide - is the necessary element of the grade. The others are optional. Cemented carbide is a composite material comprising hard carbide particles that are cemented by binding metal (mainly cobalt).
    Most cemented carbides used for producing cutting tools integrate wear-resistant coating and are known as “coated cemented carbides”. There are also various treatment processes that are applied to already coated cemented carbide (for example, the rake surface of an indexable insert). “Cemented carbide” can refer both to the substrate of a coated grade and to an uncoated grade.
  • How does ISCAR classify carbide grades?
    The international standard ISO 513 classifies hard cutting material based on their reasonable applicability with respect to the materials. ISCAR adopted this standard and uses the same approach in tool development. Cemented carbides are very hard materials and therefore they can cut most engineering materials, which are softer. Some carbide grades demonstrate better performance than others in cutting tools applied to machining a specific class of materials.
  • The groups of application of carbide grades in accordance with ISO 513 include letters and numbers after the letter. What do they mean?
    The letters in the group of application define a class of engineering materials, to which a tool that is produced from a specific grade, can be applied successfully. The classification numbers show hardness-toughness ratio of the grade in an arbitrary scale. Higher numbers indicate an increase in grade toughness, while lower numbers indicate an increase in grade hardness.
  • What is SUMO TEC technology?
    SUMO TEC is a specific post-coating treatment process developed by ISCAR. The treatment has the effect of making coated surfaces even and uniform, minimizing inner stresses and droplets in coating. In CVD coatings, due to the difference in thermal expansion coefficients between the substrate and the coating layers, internal tensile stresses are produced. Also, PVD coatings feature surface droplets. These factors negatively affect a coating and therefore shorten insert tool life.
    Applying SUMOTEC post-coating technologies considerably reduces and even removes these unwanted defects and results in increasing tool life and greater productivity.
  • Why are PVD nano layered coatings considered so efficient and progressive?
    PVD coatings were introduced during the late 1980’s. With the use of advanced nanotechnology, PVD coatings performed a gigantic step in overcoming complex problems that were impeding progress in the field.
    Developments in science and technology brought a new class of wear-resistant nano layered coatings. These coatings are a combination of layers having a thickness of up to 50 nm (nanometers) and demonstrate significant increases in the strength of the coating compared to conventional methods.
  • The designation of ISCAR’s carbide grades usually starts from letters “IC”. Why is grade DT7150 (DO-TEC) designated differently?
    Coating technology features two principal directions - Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD). Technology development allows both methods – CVD and PVD – to be combined for insert coatings, as a means of controlling coating properties.
    ISCAR’s carbide grade DT7150 features a tough substrate and a dual MT CVD (Medium Temperature CVD) and TiAlN PVD coating. The grade was originally developed to improve the productive machining of special-purpose hard cast iron.
    Обрабатываемые материалы
  • Как ISCAR классифицирует обрабатываемые материалы, когда дает рекомендации по режимам резания?
    ISCAR разделяет обрабатываемые материалы в соответствии с международным стандартом ISO 513. Обозначение основных групп материалов и групп применений отображено в техническом руководстве VDI 3323.
  • В стандарте ISO 513 указаны режущие инструменты, предназначенные для обработки нержавеющей стали в качестве инструментов для группы M. Это правильно?
    В ISO 513 группа M (обозначена желтым цветом) относится к инструментам для обработки нержавеющей стали с аустенитной и аустенитной/ферритной (дюплексной) структурой. Ферритная и мартенситная нержавеющая сталь относится к группе P (обозначена синим цветом), режимы резания должны быть выбраны соответствующим образом.
  • Обработка титана схожа с обработкой аустенитной нержавеющей стали?
    Коммерчески чистый титан, α- или α-β-титановые сплавы могут обрабатываться также, как и аустенитная нержавеющая сталь за исключением β- и псевдо-β-титановых сплавов.
  • Почему обрабатываемость материалов ISO групп M и S следует рассматривать вместе?
    Такие материалы относятся к труднообрабатываемым материалам и имеют общие особенности обработки: низкая теплопроводность и большие силы резания.
  • Чугун относится к ISO группе K?
    Большинство видов чугуна (серый, c шаровидным графитом, ковкий) относятся к группе K.
    При обработке закаленного или отбеленного чугуна следует выбирать инструменты (и соответствующие режимы резания), рекомендованные для материалов группы H.
    Аустенитный высокопрочный чугун (ADI) в мягком состоянии относится к группе P.
    Аустенитный высокопрочный чугун (ADI) в закаленном состоянии относится к группе H.